Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Analog to Digital Converter' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Analog to Digital Converter' found in 1 term [] and 9 definitions [], (+ 1 Boolean[] results
previous     6 - 10 (of 11)     next
Result Pages : [1]  [2]  [3]
Searchterm 'Analog to Digital Converter' was also found in the following services: 
spacer
News  (1)  
 
Dynamic Range
 
The range of signal intensities that may need to be distinguished in an image or spectrum or that can be distinguished by the electronic components. If the signal dynamic range is too great, the need to keep the highest intensities from overloading the digitizer may result in the weaker features being lost in the digitization noise. This can be dealt with by using an analog to digital converter with a larger range of sensitivity or by using techniques to reduce the dynamic range, e.g. suppressing the signal from water in order to detect the signal from less abundant compounds.
spacer
Searchterm 'Analog to Digital Converter' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (5) Open this link in a new window
Hardware
 
MRI hardware includes the electrical and mechanical components of a scanning device.
The main hardware components for the MRI machine are:
The magnet establishing the B0 field to align the spins.
Within the magnet are the gradient coils for producing variations in B0 in the X, Y, and Z directions to make a localization of the received data possible.
Within the gradient coil or directly on the object being imaged is the radio frequency (RF) coil. This RF coil is used to establish the B1 magnetic field necessary to excite the spinning nuclei. The RF coil also detects the signal emitted from the spins within the object being imaged.
The RF amplifier increases the power of the pulses.
The analog to digital converter converts the received analog raw data into digital values.
Depending on the design of the device and the body part being imaged the patient is positioned inside the magnet (e.g. on a movable table or standing upright).
The MRI scan room is surrounded by a RF shield (Faraday cage).
In addition, a computer console, a display, and a film printer belong to the MRI equipment.

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Gamma Camera
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine
spacer

• View the DATABASE results for 'Hardware' (19).Open this link in a new window


• View the NEWS results for 'Hardware' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Imaging Hardware
   by www.fmrib.ox.ac.uk    
  News & More:
Why non-magnetic capacitors matter in medical imaging
Wednesday, 19 February 2020   by www.medicaldesignandoutsourcing.com    
A transportable MRI machine to speed up the diagnosis and treatment of stroke patients
Wednesday, 22 April 2015   by medicalxpress.com    
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Corporations - - Quality Advice - Image Quality - Safety Products - Journals
 
Medical Imaging
 
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)

All this type of scans are an integral part of modern healthcare. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS). In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.
See also Hybrid Imaging.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of', 'MRI will have replaced 50% of x-ray exams by'
Radiology-tip.comradDiagnostic Imaging
spacer
Medical-Ultrasound-Imaging.comMedical Imaging
spacer

• View the DATABASE results for 'Medical Imaging' (20).Open this link in a new window


• View the NEWS results for 'Medical Imaging' (81).Open this link in a new window.
 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Medical imaging shows cost control problem
Tuesday, 6 November 2012   by www.mysanantonio.com    
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
Positron Emission Tomographic Imaging in Stroke
Monday, 28 December 2015   by www.ncbi.nlm.nih.gov    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
Combination of MRI and PET imaging techniques can prevent second breast biopsy
Sunday, 29 June 2014   by www.news-medical.net    
3D-DOCTOR Tutorial
   by www.ablesw.com    
Searchterm 'Analog to Digital Converter' was also found in the following services: 
spacer
News  (1)  
 
Pulse Sequence Timing DiagramInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Spin Echo Timing Diagram The schematic figures of a pulse sequence timing diagram illustrate the steps of basic hardware activity that are incorporated into a pulse sequence. Time during sequence execution is indicated along the horizontal axes. Each line belongs to a different hardware component. One line is needed for the radio frequency transmitter and also one for each gradient (Gs = slice selection gradient x, Gf = phase encoding gradient y, Gf = frequency encoding gradient z, also called readout gradient).
In picture 1, a timing diagram for a 2D pulse sequence is shown.
Slice selection and signal detection are repeated in duration, relative timing and amplitude, each time the sequence is repeated. A single phase encoding component is present each time the sequence is executed.
Additional lines are added for ADC (Analog to Digital Converter) and sampling. A gradient pulse is shown as a deviation above or below the horizontal line. Simultaneous component activities such as the RF pulse and slice selection gradient are indicated as a non-zero deviation from both lines at the same horizontal position. Simple deviations from zero show constant amplitude gradient pulse. Gradient amplitudes that change during the measurement, e.g. phase encoding are represented as hatched regions.

Spin Echo Timing Diagram The second picture shows a timing diagram for a 3D pulse sequence.
Volume excitation and signal detection are repeated in duration, relative timing and amplitude, each time the sequence is repeated. Two phase encoding components are present, one in the phase encoding direction and the other in slice selection direction (irrespectively incremented in amplitude) in each time the sequence is executed. A description of the comparison of hardware activity between different pulse sequences.
spacer

• View the DATABASE results for 'Pulse Sequence Timing Diagram' (7).Open this link in a new window

Searchterm 'Analog to Digital Converter' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (5) Open this link in a new window
Sampling
 
Conversion of the analog signal to a series of digital values by measurement at a set of particular times; this utilizes the analog to digital converter. If the rate of sampling is less than twice the highest frequency in the signal, aliasing will occur. The duration of sampling determines how small a difference of frequencies can be separated.

See also Aliasing.
spacer

• View the DATABASE results for 'Sampling' (45).Open this link in a new window

MRI Resources 
Used and Refurbished MRI Equipment - Safety Products - Health - PACS - Lung Imaging - Calculation
 
previous      6 - 10 (of 11)     next
Result Pages : [1]  [2]  [3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 3 May 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]